
Advanced Design System 2011.01 - Cadence Library Integration

1

Advanced Design System 2011.01

Feburary 2011
Cadence Library Integration

Advanced Design System 2011.01 - Cadence Library Integration

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - Cadence Library Integration

3

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Advanced Design System 2011.01 - Cadence Library Integration

4

or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Advanced Design System 2011.01 - Cadence Library Integration

5

to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - Cadence Library Integration

6

 About Cadence Library Integration . 7
 RFIC Dynamic Link . 7
 RF Design Environment . 7
 Library Integration . 9
 Using Examples . 10
 Intended Audience . 10

 Getting ADS Device Parameter Information . 11
 Listing Available Devices . 11
 Getting Device Parameters . 12

 Creating the Netlist Interface . 16
 Creating the ads Symbol View for a Component . 16
 Modifying the Component Description Format . 19
 Modifying the Component Netlisting Function(s) . 28
 Setting up a Component Stop View . 29
 Setting up a Special simInfo for a Stop View (viewInfo) . 29
 Special Functions and Properties . 30

 Creating Model Files . 32
 Creating a Simple ADS Model File . 32
 Creating a Parametric Subnetwork Model File . 33
 Defining Instance Parameters using Expressions . 34
 Defining Model Parameters using Expressions . 34

 Migrating simInfo Definitions . 37
 Using the Migration Tool . 37

 Adding CDF/SimInfo to a Component Library . 45
 Using cdfDumpAll . 45
 Cadence Documentation References . 46

 The basic Library . 47
 Modifying the analogLib Library . 48

Advanced Design System 2011.01 - Cadence Library Integration

7

 About Cadence Library Integration
The information provided in this document pertains to both the Agilent Technologies RFIC
Dynamic Link and RF Design Environment (RFDE). These two products are provided for
customers who want to take advantage of Agilent's powerful RF simulation technology
while still maintaining access to the tools provided by Cadence Design Systems.

 RFIC Dynamic Link
The RFIC Dynamic Link enables you to simulate your Cadence designs in the Advanced
Design System (ADS) environment. Designs entered in the Cadence Schematic and stored
in the Cadence design database are represented on the ADS schematic via its symbol
view. The circuits can be simulated together with arbitrary combinations of ADS system
and circuit components using all the circuit simulators available in ADS.

 RF Design Environment
The RF Design Environment provides a more tightly integrated EDA solution that enables
RF/mixed-signal IC designers to simulate their designs directly in the Cadence
environment using the ADSsim RF simulator. This enables the RF/MS IC customer to take
advantage of complementary features provided by both Agilent Technologies and Cadence
Design Systems.

 RF Design Environment Supported Platforms

If you are creating user-compiled models in ADS for use with RFDE, Supported UNIX
Platforms for RF Design Environment and Supported Cadence Platforms for RF Design
Environment show a history of the supported RFDE platforms.

 Supported UNIX Platforms for RF Design Environment

Advanced Design System 2011.01 - Cadence Library Integration

8

RFDE HP-UX Solaris AIX Linux

2002C HP-UX 11.0 Solaris 7 & 8 AIX
4.3

2003A HP-UX 11.0
& 11i

Solaris 7, 8, & 9 x

2003C HP-UX 11.0
& 11i

Solaris 7, 8, & 9 x Red Hat 7.2, & 7.3

2004A HP-UX 11.0
& 11i

Solaris 8 & 9 x Red Hat 7.2, 7.3, & 8

2005A HP-UX 11.0
& 11i

Solaris 8, 9, & 10 x Red Hat 7.2, 7.3, & 8RHE 2.1 & 3.0

2006A32-
Bit OS†

HP-UX 11.0
& 11i

Solaris 8, 9, & 10 x Red Hat WS 3.x, WS 4.x, Novell SUSE Linux
Enterprise Server 9.3

2006A64-
bit OS†

Not
Supported

Solaris 8, 9, & 10
with 64-bit support
turned on

x Red Hat WS 3.x, 4.0, Novell SUSE Linux Enterprise
Server 9.3 compatible architectures (64-bit AMD
Optern and Intel EM64T processors)

† For more detailed information on supported platforms for the current release, refer to your UNIX and Linux
Installation documentation.

 Supported Cadence Platforms for RF Design Environment

RFDE Cadence

2002C IC 4.4.5 QSR3 & IC 4.4.6 MSR7

2003A IC 4.4.5 QSR4, IC 4.4.6 MSR8, & IC 5.0 MSR3

2003C IC 4.4.6 MSR8 & IC 5.0 MSR3

2004A IC 5.0.33 USR2 (CDBA)ICOA 5.0.33 USR2 (OpenAccess)IC 5.1.41 (CDBA)ICOA
5.1.41 (OpenAccess)

2005A IC 5.1.41 (CDBA)ICOA 5.1.41 (OpenAccess)

2006A (32-bit
Environment) †

IC 5.1.41 (CDBA)ICOA 5.1.41 (OpenAccess)

2006A (64-bit
Environment) †

IC 5.1.41 (CDBA)ICOA 5.1.41 (OpenAccess) (AMD 64-bit version of Redhat not
supported)

2006 Update(32- and 64-
bit Environments) †

IC 5.1.41 (CDBA)ICOA 5.1.41 (OpenAccess) ICOA 5.2.51 (OpenAccess 2.2)IC
6.1.0 (OpenAccess 2.2)(AMD 64-bit version of Redhat not supported)

2008(32- and 64-bit
Environments) †

IC 5.1.41 (CDBA)ICOA 5.1.41 (OpenAccess) ICOA 5.2.51 (OpenAccess 2.2)IC
6.1.0 (OpenAccess 2.2)IC 6.1.1 (OpenAccess 2.2)(AMD 64-bit version of Redhat
not supported)

2008 Update(32- and 64-
bit Environments) †

IC 5.1.41 (CDBA)IC 6.1.0 (OpenAccess 2.2)IC 6.1.1 (OpenAccess 2.2)IC 6.1.2
(OpenAccess 2.2)(AMD 64-bit version of Redhat not supported)

† For more detailed information on supported platforms for the current release, refer to your UNIX and Linux
Installation documentation.

For more information on User-Compiled Models in RF Design Environment, refer to the
section on Loading Shared Libraries Containing User-Compiled Models in the Advanced
Design System User-Defined Models documentation. The ADS documentation set can be
accessed from the Agilent EEsof EDA Web site is at:

Advanced Design System 2011.01 - Cadence Library Integration

9

http://www.agilent.com/find/eesof-docs/

 Library Integration
Both RFIC Dynamic Link and RF Design Environment require an extension of the process
library to support the netlister and also require the development of model files in ADS
format. This additional information is used to generate netlists in ADS format as shown in
Simulation Data Flow (adshbapp).

 Simulation Data Flow

Note
If you are planning to use components from the basic and analogLib libraries in your designs, refer to
The basic Library (dynlnklc) and Modifying the analogLib Library (dynlnklc) for additional information.

If you are interested in using Spectre Model Files, refer to the Spectre Compatible Process
Design Kits documentation in RF Design Environment documentation set. The RFDE
documentation set can be accessed from the Agilent EEsof EDA Web site is at:

http://www.agilent.com/find/eesof-docs/

This document provides information on how to make these additions, articulated into the
following two categories:

Creating the Netlist Interface: This task consists of modifying the Cadence library
database by adding ADS simulation information to the Component Description Format
(CDF) and creating an ads Cellview for each library component.
Creating Model Files: This is done by creating ASCII text files, formatted for ADS,
that contain model parameters for each of the components.

http://www.agilent.com/find/eesof-docs/
http://www.agilent.com/find/eesof-docs/
http://www.agilent.com/find/eesof-docs/
http://www.agilent.com/find/eesof-docs/

Advanced Design System 2011.01 - Cadence Library Integration

10

 Using Examples
Each of the above tasks is described with examples. Both RFIC Dynamic Link and RF
Design Environment include a modified version of the analogLib library installed under
$HPEESOF_DIR/cdslibs/5.1.0 or 5.1.2 which is used in the examples. If you do not have
write access to this directory or do not want to overwrite it, make a copy of the directory
first as follows:

cd $HPEESOF_DIR/cdslibs/5.1.0 (or 5.1.2)

find analogLib -depth -print | cpio -pd

If you make a copy of the library (recommended), ensure that you edit your cds.lib file to
point to your own copy of analogLib instead of to the original installed version.

 Intended Audience
The information contained in this documentation applies to EDA engineers and managers
responsible for creating and maintaining process libraries who:

would like to implement a design flow based on the integration of ADS and Cadence
DFII using the RFIC Dynamic Link or RF Design Environment.
have an existing Cadence component library which supports at least one
commercially available SPICE simulator.
are familiar with the Cadence library structure and Component Description Format
(CDF).

If you are familiar with the topics above, you can successfully complete the library
modification using the information contained in this documentation.

 The following rules apply to this guide

Wherever a shell variable is set, the Korn shell syntax is presented.
Unless otherwise mentioned, assume case sensitivity.
If you don't understand a particular term or acronym, refer to the Glossary in the
RFIC Dynamic Link documentation.
For information on the RFIC Dynamic Link menus, refer to Command Reference for
RFIC Dynamic Link (dynlnkug).

Advanced Design System 2011.01 - Cadence Library Integration

11

 Getting ADS Device Parameter
Information
This section describes how to obtain parameter information for devices supported by the
Advanced Design System Analog/RF Simulator (ADSsim). The parameter information is
required to complete the tasks outlined in subsequent sections.

The ADS Simulator provides helpful information on netlist and model formatting via a
terminal window. To use the ADS Simulator for this purpose, ensure that your
environment has been configured for use with RFIC Dynamic Link.

 Listing Available Devices
This section describes how to use the adssim and hpeesofsim commands to list available
devices.

 The adssim Command

Previously, the hpeesofsim command was the preferred method for listing available
devices. However, you can now use the alternate adssim command in place of the
hpeesofsim command. The adssim command automatically sources the bootscript.sh file
(see below) and then calls the hpeesofsim command. The adssim command also
returns the netlist format for models. For example, using the adssim -help command with
MSUB :

$ adssim -help MSUB

Microstrip Substrate Parameter Definition.

ModelName [:Name] <parameter=value> ... ; (device)

model ModelName MSUB <parameter=value> ...

model Parameters:

 Er smorr Relative dielectric constant.

 Mur smorr Relative permeability.

 H (m) smorr Substrate thickness.

 Hu (m) smorr Cover height.

 T (m) smorr Conductor thickness.

 Cond (S/m) smorr Conductor conductivity.

 TanD smorr Dielectric Loss Tangent.

 Rough smorr Conductor surface roughness.

 Secured s---b Secured Substrate parameters.

 The hpeesofsim Command

The hpeesofsim command uses shared libraries that are set in the
$HPEESOF_DIR/bin/bootscript.sh script. Before attempting to use the hpeesofsim
command, you should source the bootscript.sh file using one of the following commands:

Advanced Design System 2011.01 - Cadence Library Integration

12

. $HPEESOF_DIR/bin/bootscript.sh (If using the Korn shell)

sh (If using the C shell)

. $HPEESOF_DIR/bin/bootscript.sh

Note
The above commands are only necessary if SHLIB_PATH for HP-UX, or LD_LIBRARY_PATH for SunOS or
Linux, does not include the shared libraries required to run hpeesofsim.

In a terminal window, enter:

hpeesofsim -help

A list of Available devices and analyses are displayed.

 Getting Device Parameters
This section describes how to use the hpeesofsim command to obtain parameter
information for a specified device. From a terminal window, enter:

hpeesofsim -help < _device_name_ >

where <device_name> is derived using the procedure described in Listing Available
Devices .

Note
All device names are case sensitive. Use the hpeesofsim -help command to verify the correct case and
spelling.

 Viewing Device Output

The output of the ADS Simulator help for a specific device is a generated list of instance
and model information. The output can be divided into four parts; the Instance Statement
, the List of Instance Parameters , the Model Statement and the List of Model Parameters .

The examples below show the simulator output for a Bipolar Junction Transistor (BJT). To
view the entire list of device parameters in a terminal window, enter:

hpeesofsim -help BJT

 Instance Statement - The first section of the output produces the netlist instance1.
statement format for the device.
Netlist instance statement format:
ModelName [:Name] collector base emitter ... <parameter=value> ... ; (device)
For more information, refer to Instance Statements in Using Circuit Simulators.
List of Instance Parameters - The second section contains the list of instance2.
parameters that can be netlisted in the instance statement.

Advanced Design System 2011.01 - Cadence Library Integration

13

List of available instance parameters:

Parameters:

 Area smorr Junction area factor.

 Region s---i DC operating region, 0=off, 1=on, 2=rev, 3=sat.

 Temp (C) smorr Device operating temperature.

 Gbe (Siemens) ---rr Small Signal Base Emitter Conductance.

 Cbe (F) ---rr Small Signal Base Emitter Capacitance.

 Gb (Siemens) ---rr Small Signal External Base Conductance.

 Cbc (F) ---rr Small Signal Internal Base Collector Capacitance.

 Cbcx (F) ---rr Small Signal External Base Collector Capacitance.

 Ccs (F) ---rr Small Signal Collector to Substrate Capacitance.

 dQbe_dVbc (F) ---rr Small Signal Vbc To Qbe Transcapacitance.

 dIce_dVbe (Siemens) ---rr Small Signal Forward Transconductance gm.

 dIce_dVbc (Siemens) ---rr Small Signal Reverse Transconductance gmr.

 dIbe_dVbc (Siemens) ---rr Small Signal Reverse Transconductance gmr.

 dIbx_dVbe (Siemens) ---rr External Base Transconductance dIbx_dVbe.

 dIbx_dVbc (Siemens) ---rr External Base Transconductance dIbx_dVbc.

 NPN s---b NPN bipolar transistor.

 PNP s---b PNP bipolar transistor.

 Mode s---i Nonlinear spectral model on/off.

 Noise s---b Noise generation on/off.

Example of an instance statement containing some instance parameters:
NPN:Q1 c b e s Area=10 Region=1
 Model Statement - The third section contains the device model statement format:3.
model ModelName BJT <parameter=value> ...
For more information, refer to Model Statements in Using Circuit Simulators.
List of Model Parameters - The last section contains the model parameter4.
information used to build the ASCII model file.

Note
The use of ellipse (...) in the following output format indicates that some of the information has not
been shown for conciseness.

List of available model parameters:

model Parameters:

 NPN s---b NPN bipolar transistor.

 PNP s---b PNP bipolar transistor.

 Is (A) smorr Saturation current.

 Js (A) smorr Saturation current.

 Bf smorr Forward beta.

 Nf smorr Forward emission coefficient.

 Vaf (V) smorr Forward Early voltage.

 Vbf (V) smorr Forward Early voltage.

 ...

 wBvbe (V) s--rr Base-emitter reverse breakdown voltage \(warning\).

 wBvbc (V) s--rr Base-collector reverse breakdown voltage \(warning\).

 wVbcfwd (V) s--rr Base-collector forward bias \(warning\).

 wIbmax (A) s--rr Maximum base current \(warning\).

 wIcmax (A) s--rr Maximum collector current \(warning\).

 wPmax (W) s--rr Maximum power dissipation \(warning\).

 Approxqb s---b use the approximation for Qb vs Early voltage.

 Lateral s---b Lateral substrate geometry.

 Null s---- Has no effect.

Advanced Design System 2011.01 - Cadence Library Integration

14

Example of Model Statement containing some model parameters (note the use of the
backslash character):

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \

Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \

Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \

Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \

Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \

Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test\(AAA\) Itf=0.32 Ptf=32 \

Tr=1E-09 Fc=0.6

In the previous definition, the parameter attributes have the following interpretation:

field 1: settable

 s = settableS = settable and required

field 2: modifiable

 m = modifiable

field 3: optimizable

 o = optimizable

field 4: readable

 r = readable

field 5: type

 b = booleani = integerr = real numberc = complex numberd = device instances = character string

For more information on parameter attributes, refer to Model Parameter Attribute
Definitions.

Advanced Design System 2011.01 - Cadence Library Integration

15

Attribute Meaning Example

 settable Can be defined in the instance or model statement.
Most parameters are settable, there are a few cases
where a parameter is calculated internally and could
be used either in an equation or sent to the dataset
via the OutVar parameter on the simulation
component. The parameter must have its full
address.

Gbe (Small signal Base-Emitter
Conductance) in the BJT model can be sent
to the dataset by setting
OutVar="MySubCkt.X1.Gbe" on the
simulation component.

 required Has no default value; must be set to some value,
otherwise the simulator will return an error.

 modifiable The parameter value can be swept in simulation.

optimizable

The parameter value can be optimized.

 readable Can be queried for value in simulation using the
OutVar parameter. See settable.

 boolean Valid values are 1, 0, yes, no, True, and False.

 integer The maximum value allowed for an integer type is
32767, values between 32767 and 2147483646 are
still valid, but will be netlisted as real numbers. In
some cases the value of a parameter is restricted to
a certain number of legal values.

The Region parameter in the BJT model is
defined as integer but the only valid values
are 0, 1, 2, and 3.

 real
number

The maximum value allowed is
1.79769313486231e308+.

 complex
number

The maximum value allowed for the real and
imaginary parts is 1.79769313486231e308+.

 device
instance

The parameter value must be set to the name of
one of the instances present in the circuit.

The mutual inductance component
(Mutual), where the parameters Inductor1
and Inductor2 are defined by instance
names of inductors present in the circuit or
by a variable pointing to the instance
names.
Inductor1="L1" or Inductor1=Xyz
where Xyz="L1"

 character
string

Used typically for file names. Must be in double
quotes.

Filename="MyFileName"

Advanced Design System 2011.01 - Cadence Library Integration

16

 Creating the Netlist Interface
This chapter describes how to modify the Cadence library database. This includes creating
a new ads symbol view for each library component as well as adding an ADS simulation
information section to the Component Description Format (CDF). This procedure can be
divided into the following tasks:

Creating the ads Symbol View for a component
Modifying the CDF for a component

Getting existing CDF information for a component
Editing the CDF File contents
Loading the modified CDF file

Modifying the component netlisting function(s)

Note
While the procedure for modifying the analogLib npn component is described, this same procedure
can be applied to most any library component.

Schematic netlisting for the ADS Analog/RF Simulator (ADSsim) is achieved through
custom written SKILL code that uses OASIS Direct. The netlister follows the conventions
of OASIS direct, and supports the same capabilities that other OASIS Direct netlisters,
such as Spectre, support.

Netlisting is provided for two alternate tool flows. The first flow involves using the Circuit
Design Environment to perform simulation setup and simulation. The alternate flow
involves using RFIC Dynamic Link. The code for both netlisting solutions is shared in a
single context file.

 Creating the ads Symbol View for a Component
Each primitive component requires an ads symbol view (or stop view) so that the
netlister knows where in the design hierarchy stops expanding the netlist. The ads symbol
view also functions as an instance parameter template.

Note
For more detailed information on creating and modifying symbol views in Cadence, refer to Chapter 5:
Creating Symbols in the Cadence Virtuoso Schematic Editor User Guide .

To create the ads view:

From the Cadence CIW, choose File > Open to open an existing symbol view (for1.
example, the spectre view) of a cell such as the analogLib npn cell.

Advanced Design System 2011.01 - Cadence Library Integration

17

Choose Design > Save As. The Save As dialog box appears.2.

In the Save As dialog box, change the View Name field to ads and click OK . This3.
creates the ads view in the analogLib database for the npn cell.

Alternatively, you can use the following procedure:

In the Cadence CIW, choose Tools > Library Manager . The Library Manager form1.
appears.

Advanced Design System 2011.01 - Cadence Library Integration

18

In the Library Manager form, choose Edit > Copy . The Copy View form appears.2.

Advanced Design System 2011.01 - Cadence Library Integration

19

In the To section of the Copy View dialog box, enter ads in the View field. Ensure that3.
all other pertinent information is correct, then click OK .

 Modifying the Component Description Format
To modify the Component Description Format (CDF) information for a particular library
component, you need the following information:

A list of ADS instance parameters for the component. For more information, refer to
Getting Device Parameters (dynlnklc).

The existing CDF information for the component.

Advanced Design System 2011.01 - Cadence Library Integration

20

 Using the CDF Editor

One method for editing the component CDF is by using the CDF editor.

To launch the CDF editor from the CIW:

Choose Tools > CDF > Edit . The Edit Component CDF form appears.1.

Ensure the CDF Type is set to Base .2.

Important
To save CDF Edit dialog box changes, you must edit the base-level CDF and have write permission
to the library. For more information on CDF Type, refer to your Cadence documentation.

Select the component you wish to edit using the Browse button, or by typing it in3.
manually.
To set up the simulation information for the ads tool, click the Edit button in the4.
Simulation Information section of the Edit Component CDF form. The Edit Simulation
Information form appears.

Advanced Design System 2011.01 - Cadence Library Integration

21

 Cadence Edit Component CDF and Edit Simulation Information Form

Advanced Design System 2011.01 - Cadence Library Integration

22

Note
While the CDF Edit Simulation Information form may be used to edit the CDF, it is more useful to verify
what is in the CDF database. Using cdfDump() and a text editor is more reliable for editing the CDF.

 Using cdfDump

In addition to using the Edit Component CDF form, it is also possible to create a SKILL
representation of a components CDF. This SKILL representation can be exported to a file,
edited, and then reloaded in order to change the CDF of a component.

The to use the cdfDump command:

Enter the command cdfDump(" <library> " " <file> " ?cellName " <cell> ") in the1.
Cadence CIW. This will create the SKILL CDF file. For example:
cdfDump("analogLib" "/tmp/npn.cdf" ?cellName "npn")
 Edit the CDF information (see Cadence Component Description Format User's Guide)2.
in a text file to make modifications. For example:
vi /tmp/npn.cdf
Find the section that begins with "cdfId->simInfo->ads='(nil".3.
Edit the fields as appropriate (see Adding CDF Simulation Information for ADS). The4.
CDF file consists of two main parts. The first part defines the generic parameters
used, for example, width and length . These parameter definitions are shared by all
the supported simulators under the Affirma Analog Circuit Design Environment. The
second part, known as the simulation information (simInfo) section, details how
some subset of these parameters apply to each different simulator. This section
determines how each component instance is netlisted and how its model arguments
and model parameter values are output in the netlist. The simInfo sub-section of
primary interest here is the ads siminfo sub-section, which needs to be created in
order for the component to be supported by RFIC Dynamic Link.
Save the modified file.5.
To update the component, load the modified CDF file.6.

 Example CDF File

The actual CDF file may resemble the following. For conciseness, only a few of the CDF
parameter definitions and siminfo sub-sections have been shown here. This file was
obtained as outlined in the previous step. The ads Simulation Information sub-section is
shown highlighted.

/*********************/

LIBRARY = "analogLib"

CELL = "npn"

/************************/

let((libId cellId cdfId)

 unless(cellId = ddGetObj(LIBRARY CELL)

 error("Could not get cell %s." CELL)

)

 when(cdfId = cdfGetBaseCellCDF(cellId)

Advanced Design System 2011.01 - Cadence Library Integration

23

 cdfDeleteCDF(cdfId)

)

 cdfId = cdfCreateBaseCellCDF(cellId)

 ;;; Parameters

 cdfCreateParam(cdfId

 ?name "model"

 ?prompt "Model name"

 ?defValue ""

 ?type "string"

 ?display "artParameterInToolDisplay('model)"

 ?parseAsCEL "yes"

...

;;; Simulator Information

 cdfId->simInfo = list(nil)

 cdfId->simInfo->ads = '(nil

 namePrefix ""

 netlistProcedure ADSsimCompPrim

 otherParameters (model)

 instParameters (Area Region Trise Noise _M)

 termOrder (C B E S)

 termMapping (nil C ": P1" B ": P2" E ": P3" S ": P4")

 propMapping (nil Area area Region region Noise isnoisy

 Trise trise _M m)

 typeMapping (nil Region region)

 uselib nil

)

...

 Adding CDF Simulation Information for ADS

A detailed explanation of the CDF information fields is provided in your Cadence
documentation. However, in addition, the following information applies to RFIC Dynamic
Link.

There are 9 fields that you can specify for the ADS Simulation Information definition. It is
not necessary to define values for all fields. Empty fields are ignored, or will use a default
value as a specified in the description of each field.

 netlistProcedure: This field is used to specify the name of the SKILL procedure to
use to netlist the component. Use the built-in netlisting functions ADSsimCompPrim
for devices and ADSsimSubcktCall for subcircuits. If it is left blank, it will default to
ADSsimSubcktCall .
 otherParameters: The otherParameters field has no effect on a parameter that does
not use the artParameterInToolDisplay function to determine whether a parameter is
displayed or not. For example, the most commonly specified parameter in
otherParameters is model . In the ADS simulator, model determines the component
type of the instance. It is not netlisted in the parameter list, but it is necessary to
enable you to see and edit its value. For an npn component, it is put in the
otherParameters list, because, for an npn, the display value for model is determined
by artParameterInToolDisplay('model) . If model does not exist in otherParameters,
and the tool filter is set to ADS, model will not be displayed in the edit properties
dialog.
 instParameters: This field is used to specify the parameters that will be output for an
instance. The instParameters field also defines the parameters that will be output for

Advanced Design System 2011.01 - Cadence Library Integration

24

hierarchical parameter passing in the subcircuit definition of hierarchical schematics.
The instParameters field should use the name as it needs to appear in the netlist.
This may be different from the actual name of the parameter. Parameter name
mapping is handled in the propMapping field. The order of the parameters is
unimportant for ADS. For the ADS simulator, if the value of the parameter is empty,
it will not be output into the netlist. As an example, the npn has parameters of area ,
region , trise , noise, and m . The instParameters field for ADS is set to the list (Area
Region Trise Noise M). None of these names actually represent the CDF parameter
name, they are all mapped parameter names (see _propMapping).
 componentName: This field is used to define the simulator primitive, model, or
subcircuit for an instance. The value is derived first by checking to see if there is a
parameter named model. If there is, and the value of model is not empty, the value
of the model parameter is used as the component name. If model is empty, or the
parameter is not defined in the CDF, the value of componentName is consulted and
used. If componentName is empty, the name of the cell is used as the component
name.
 termOrder: This field specifies the order in which the terminals are netlisted. This
information is obtained for each ADS component by entering:
hpeesofsim -help < device_name >
For subcircuits, the termOrder field also specifies the hierarchical terminal order that
is created in the subcircuit definition statement. The pin names can be specified as
symbols or as strings. If bus notation is specified, the bus vector element will be
expanded completely prior to outputting the next specified terminal.
 termMapping: This field is used to map the name of an instance pin to the simulator
name that is output in the PSF file. The termMapping field must be defined for DC
Current annotation to function properly. For the ADS simulator, the terminal mapping
should be specified as the terminal number specified in the termOrder field, prefixed
with P . In order to get the negative value of a bi-directional pin, prefix the number
with minus.P . Each terminal should have a ":" separator specified, and should be
specified as a string. The value should be specified as a disembodied list. It is also
important to specify the name of the terminal exactly as it appears in the termOrder
field. If the termOrder field is specified using strings, use strings in the termMapping
field. If the termOrder field is specified using symbols as the pin names, use symbols
in the termMapping field. For example, the npn has a termOrder of '(C B E S). The C
terminal is the first in the list, and thus has the terminal number 1 as far as the ADS
simulator is concerned. The proper terminal mapping for the simulator is ": P1 " . The
complete terminal mapping is the list '(nil C ": P1" B ": P2" E ": P3" S ": P4").
 propMapping: This field is used to specify how CDF property names should have
their names mapped to netlisting parameter names. It is a disembodied list. The
mapped name should be specified, followed by the CDF property name. Note that
mapping a property to model will allow that parameter's value to be used as the
componentName. For example, the npn has Area as one of the parameters specified
in the instParameters field. The actual CDF property name for Area is area . The area
parameter needs to be mapped to Area for the ads simulator. This is done by setting
propMapping to '(nil Area area). The npn actually has several parameters that need
to be mapped, so more can be added to the list. The final propMapping for the npn
becomes '(nil Area area Region region Noise isnoisy Trise trise _M m).
 typeMapping: The typeMapping field enables you to map parameter values so they
are output in a specific format. The typemapping field is specified as a disembodied
list, where the name of the instParameter field to do value mapping on is specified,
followed by the name of the mapping to perform. The name of the mapping is

Advanced Design System 2011.01 - Cadence Library Integration

25

actually mapped into a function name, which is called with the value of the
parameter. The type map name will be prefixed with rfdeNetlistTypemap_ to get the
final name. Thus, a typeMapping of (nil L1 string) would take the value of the L1
parameter, and pass it to the function rfdeNetlistTypemap_string .
To add more type mappings, you must create your own skill procedures, and follow
the naming process of rfdeNetlistTypemap_ <your type map name> . Some of the
relevant type mappings shipped with the product are as follows:
string - Returns the value enclosed in double quotes if the value passed in was a
string, nil otherwise.
boolean - Returns "yes" if the value passed in is "t". Otherwise, "no" is returned.
region - Returns the expected ADS integer, based on the value passed in. Expected
passed in values come from the region parameters specified in cyclic fields for
assorted analogLib components.
uselib: In the ADS simulator, there are libraries of pre-defined netlist fragments.
These are usually subcircuits that use elaborate equations to define parameter
values. These component libraries must be accessed by preceding the netlist instance
with a C Pre-processor directive, #uselib " <library> ", " <component> ". In this
case, the component should be picked up from the componentName field. The library
does not necessarily represent the Cadence library name, so it is necessary to specify
what the simulator library name is. For example, the nport2 device in analogLib is
netlisted as an S-parameter device. However, the S-parameter devices in the ADS
simulator are not primitives - they are actually netlist based subcircuit fragments. In
order to access the device, it is necessary to prefix the nport2 with a pre-processor
directive, #uselib "ckt", "nport2" . This specifies that the nport2 definition can be
obtained from the ckt.library file. The uselib library name to file name mappings are
defined in the file $HPEESOF_DIR/circuit/config/ADSlibconfig.
The npn has been instantiated as shown in the figure below with the connecting wires
named according to the device terminals.

Advanced Design System 2011.01 - Cadence Library Integration

26

 Instance of npn Component

The object parameters for this instance have been set as follows:

Advanced Design System 2011.01 - Cadence Library Integration

27

The instance statement on the ADS netlist corresponding to this instance will appear as
follows:

...

npnmod:Q0 coll base emit 0 Area=2.0 Region=1 Trise=2.0

...

The instance statement on the ADS netlist corresponding to this instance contains the
following parameters:

npnmod The netlister evaluates the expression contained in the componentName
CDF field and in this case picks up the value of the model name property.
Q0 The instance name value is defined in the Instance Name field of the Edit Object
Properties form.

Note
Illegal characters are mapped to legal characters.

coll base emit 0 The first three entries are taken from the names of the nodes to
which the device is attached (see Instance of npn Component). In this case, the
names have been explicitly assigned but the same applies to system generated node
names. The termOrder field in the CDF controls the order in which the terminals are

Advanced Design System 2011.01 - Cadence Library Integration

28

netlisted.

Note
The progn SKILL function is no longer supported by RFIC Dynamic Link in Cadence version 4.4.5 and
above.

Area=2.0 Region=1 Trise=2.0 The parameters Area , Region and Trise are listed
in the instParameters field of the component CDF, therefore they are netlisted as
instance properties if their value has been set on the instance. If the field is left
blank, the parameter is not netlisted and the simulator uses the default value.

 Additional Notes for Simulation Information Fields

When errors in the CDF file are loaded with load < file >, command errors may not be
reported. If this occurs, the corresponding ads simulation view for the device is not
created.

 Loading the Modified CDF File

After modifying the CDF text file to support the ADS simulator, load the edited file from
the CIW using the SKILL command, load. For example:

load "/tmp/npn.cdf"

This automatically updates the Cadence library database and saves the new CDF
information in the database, provided you have write permissions.

 Modifying the Component Netlisting Function(s)
Each simulator can use its own netlist function to write out a component instance in its
own netlist format. By default, the nlPrintInst function is used in RFIC Dynamic Link to
format any instance where a custom netlist instance has not been specified.

Note
The ADSsimCompPrim, ADSsimSubcktCall, IdfDevPrim , IdfCompPrim , and IdfSubcktCall functions were
used in the past and are all still available for backward compatibility. However, these are not the
recommended functions. Each of these functions simply calls the nlPrintInst function.

If you need to create your own functions, SKILL code for these built-in functions is
provided in:

$HPEESOF_DIR/cdslibs/adsLib/netlistFuncs.il

Examples of custom netlisting functions are available in:

Advanced Design System 2011.01 - Cadence Library Integration

29

$HPEESOF_DIR/cdslibs/skill/analogLibFuncs.il

 Setting up a Component Stop View
In OASIS direct, when an instance is encountered, the netlister must decide whether the
instance represents a hierarchical schematic view, or whether it represents a simulator
primitive. The ADS netlister supports schematic views and extracted views for use as
hierarchical schematics. All other views should be represented as hierarchical stopping
points. Having a "stop view" does this.

In the environment setup, a stop view list is specified. Traditionally, the stop view for a
simulator is the same as the tool name. For the ADS simulator, this means that the stop
view "ads" should be used.

Copying the symbol view to a new symbol view called ads will create the stop view. In
order to have this view used as the stop view, the stop view list must have ads put into it.

It is not necessary for the stop view to be identical to the symbol view. The stop view
simply has to have the pins that are specified by the termOrder field of the simInfo
defined in it. In many cases, the stop view will have pins with inherited connection
properties on them, so that the stop view is different from the symbol view. An inherited
connection pin is a pin that will be netlisted for hierarchy, but does not get a graphical
representation in the schematic editor.

 Setting up a Special simInfo for a Stop View
(viewInfo)
In addition to setting up a component definition for a simulator, OASIS direct also allows
the specification of a special netlisting definition for a particular stop view. This feature
was included in OASIS direct primarily for supporting verilogA behavioral modules, but can
be used for other purposes as well. If a viewInfo is not specified, the simInfo for the tool
will be used, no matter which stop view is encountered. However, if a viewInfo is defined
for a particular stop view, the viewInfo definition will be used instead of the tool definition
as defined in simInfo. In the case of verilogA, the stop view definition is used to determine
whether a primitive based subcircuit or whether a behavioral module would be used for a
spectre simulation. In Advanced Design System, this could be done in a similar manner,
except that a subcircuit with a symbolically defined device (SDD) as the behavioral
element might be used instead of a subcircuit made up of primitive elements.

The viewInfo is added into the CDF as a disembodied list, similar to the way that the
simInfo disembodied list is added. This can only be done via SKILL code; the Edit
Component CDF form does not provide a way of editing the viewInfo records. Thus, to add
new viewInfo definitions, it is required to use the cdfDump utility.

In the viewInfo record, the key field is the name of the stop view, not the simulator. This
can be a problem if two simulators want to use the same stop view, but need different

Advanced Design System 2011.01 - Cadence Library Integration

30

simulator definitions. It is crucial to ensure that definitions defined for viewInfo's can be
shared between all of the simulators that will use them.

The viewInfo uses slightly different field names from the simInfo. The valid fields for a
viewInfo are shown in Stop View Information (viewInfo) Definition. These fields will
override the values specified in the simInfo for the tool.

Parameter Description

netlistProc This field takes the place of netlistProcedure in the simInfo. The netlistProc field enables you to
override the simInfo netlisting function for a particular stop view.

moduleName This field takes the place of componentName in the simInfo. Like componentName, it will
consult the value of model prior to consulting the moduleName value.

parameterList The parameterList field takes the place of the instParameters field.

termOrder This field will override the value specified in the simInfo termOrder field.

termMapping This field will override the value specified in the simInfo termMapping field.

propMapping This field will override the value specified in the simInfo propMapping field.

typeMapping This field will override the value specified in the simInfo typeMapping field.

uselib This field will override the value specified in the simInfo uselib field.

For more information on the simInfo definition, refer to Adding CDF Simulation
Information for ADS.

 Example viewInfo

cell=ddGetObj("analogLib" "npn")

cdf=cdfGetBaseCellCDF(cell)

cdf->viewInfo=list(nil)

cdf->viewInfo->SDD='(nil netlistProc IdfCompPrim moduleName sddNpn

parameterList (Area Region Mode Temp Noise) termOrder (C B E S) termMapping

(nil C ": P1" B ": P2" E ": P3" S ": P4") propMapping (nil Area area Region

region Mode mode Temp temp Noise isnoisy) typeMapping nil uselib nil)

cdfSave(cdf)

 Special Functions and Properties
The tables provided in this section include information on special functions or properties
that can be used for schematic netlisting.

 Available Instance Netlisting Functions

Advanced Design System 2011.01 - Cadence Library Integration

31

Parameter Description

ADSsimCompPrim This is the component primitive netlisting function. It should be used for any instance that
is not a hierarchical schematic. This includes components that have netlist based
schematic definitions.

ADSsimSubcktCall This is the hierarchical schematic netlisting function. It should be used for any instance
that is a hierarchically defined schematic/extracted view. The schematic should be defined
in the dfII environment, not as a netlist based include.

 Special Functions handled by the Netlister

Parameter Description

pPar The pPar function specifies that a parent parameter should be used. In the ADS simulator, parent
parameters are accessed as local variables. In order to get the value correctly, the parameter
name specified by pPar is output directly into the netlist. The value is not replaced.

iPar The iPar function specifies that a different instance parameter should be accessed to get its
value. The iPar function will be replaced in entirety by the value designated by the iPar function.

atPar The atPar function specifies that the value of the specified parameter should be inherited from
anywhere in the hierarchy. At present, this function will replace the atPar function with the value
specified.

 Special Properties Interpreted by the Netlister

Property Description

nlAction Currently, only one value can be specified for nlAction, ignore . If the property nlAction=ignore
is set on an instance, the instance will not be netlisted. This will leave an open in the circuit
where the component would have been.

Inherited
Connections

If a netset property is placed on an instance, it represents a hierarchical port. Connectivity can
be inherited from higher levels of the hierarchy by specifying different values on the port. This
allows for nodes that are ordinarily considered global connections to become variable for
different parts of the hierarchy (e.g. VDD can be set to 3v for one part of the hierarchy, but
2.5v for a different part). The ADS netlister supports the full specification of inherited
connections for the Cadence dfII schematic editor.

Advanced Design System 2011.01 - Cadence Library Integration

32

 Creating Model Files
This section describes how to create ASCII-text process-dependent model files, formatted
for the ADS Simulator. These files are stored separate from the Cadence library database,
in a model library directory. The netlister will simply append the model file to the final top-
level ADS netlist without a syntax check. The ADS Simulator requires the syntax of these
files to be exact.

To build model files in ADS format, you'll need the following information:

The basic built-in ADS component parameter information (refer to Getting Device
Parameters (dynlnklc)).
The ADS Simulator Input format information (refer to ADS Simulator Input Syntax in
the Using Circuit Simulators documentation).

This section describes the following tasks:

Creating a Simple ADS Model File
Creating a Parametric Subnetwork Model File
Defining Instance Parameters using Expressions
Defining Model Parameters using Expressions

 Creating a Simple ADS Model File
Once the model parameters are known, you can create an ADS model file using an ASCII
text editor. In your text editor window, type in the complete model statement in the
appropriate format for the selected device as defined in part 3 of Viewing Device Output
(dynlnklc). As you build the ADS model file, be aware of the following:

The model statement must be on a single line. Use the backslash (see the following
example) as a line continuation character.
The instance and model parameter names are case sensitive.
If a parameter is not specified, the ADS simulator uses a default parameter value.
These values are documented in the Introduction to Circuit Components
documentation.

 Example

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 \

Ikf=0.8 Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \

Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \

Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \

Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \

Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=1.2 Itf=0.32 Ptf=32 \

Tr=1E-09 Fc=0.6

Advanced Design System 2011.01 - Cadence Library Integration

33

Note
Spectre model files are also supported. If you are interested in using Spectre model files, refer to the
Spectre Compatible Process Design Kits documentation in the Components, PDKs, and Models section of
the RF Design Environment http://www.agilent.com/find/eesof-docs documentation set. The RFDE
documentation set can be accessed from the Agilent EEsof EDA Web site is at:
http://www.agilent.com/find/eesof-docs/

 Creating a Parametric Subnetwork Model File
Device models, especially for active devices, often consist of complex combinations of
primitive components such as resistors, inductors, capacitors, diodes and transistors.
These model files are thus structured as subnetworks, that also allow parameters to be
set on the instance and passed down the hierarchy to the subnetwork.

The syntax supported by the ADS Simulator is described in Subcircuit Definitions in the
Using Circuit Simulators documentation.

 Example

define npn1 \(c b e s \)

parameters area=1 region=1 noise=1

; Calculate parasitics based on the passed in parameters

rdiff=.001

areac=area*.25

areab=area*.5

areae=areab*.25

rc=areac*1e12*rdiff

rb=areab*1e12*rdiff

re=areae*1e12*rdiff

cs=area*1e12*1e-15

; Define the BJT model used by the npn instance

model NPN BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \

Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \

Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \

Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \

Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \

Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=1.2 Itf=0.32 Ptf=32 \

Tr=1E-09 Fc=0.6

; Instances for the subcircuit

R:rc c c1 R=rc

R:rb b b1 R=rb

R:re e e1 R=re

C:csub s 0 C=cs

NPN:qin c1 b1 e1 s Area=area Region=region Noise=noise

end npn1

http://www.agilent.com/find/eesof-docs
http://www.agilent.com/find/eesof-docs
http://www.agilent.com/find/eesof-docs
http://www.agilent.com/find/eesof-docs/
http://www.agilent.com/find/eesof-docs/

Advanced Design System 2011.01 - Cadence Library Integration

34

Note
Spectre model files are also supported. If you are interested in using Spectre model files, refer to the
Spectre Compatible Process Design Kits documentation in the Components, PDKs, and Models section of
the RF Design Environment http://www.agilent.com/find/eesof-docs documentation set. The RFDE
documentation set can be accessed from the Agilent EEsof EDA Web site is at:
http://www.agilent.com/find/eesof-docs/

 Defining Instance Parameters using Expressions
 Instance parameters must be defined in the Component Parameters section of the
Cadence CDF as described in the Cadence Component Description Format User's Guide .
RFIC Dynamic Link and RF Design Environment support netlisting of instance parameters
that contain Cadence AEL expressions, such as math operators, iPar , pPar etc.

 Defining Model Parameters using Expressions
 Model parameters contained in ADS model files can include expressions. The expressions
can be defined by arbitrary combinations of predefined ADS functions, math operators and
Boolean operators. For a list of functions and operators supported, refer to the Simulator
Expressions documentation.

For an expression to be correctly evaluated by the ADS Simulator, both the syntax of the
expression and the value of the variables used in the expression must be defined in one of
the following places:

Directly in the model file.1.
In a separate file which is included in the top level netlist.2.
In a separate file which is included in the model file.3.

Note
These different methods can be used in combination, with expressions defined in different places, as
long as there is a single definition for each expression.

 Example

This model file for a BJT contains a model parameter, Vtf, that is defined as an expression
of the variable AAA.

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \

Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \

Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \

Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \

Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \

Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test\(AAA\) Itf=0.32 Ptf=32 \

Tr=1E-09 Fc=0.6

http://www.agilent.com/find/eesof-docs
http://www.agilent.com/find/eesof-docs
http://www.agilent.com/find/eesof-docs
http://www.agilent.com/find/eesof-docs/
http://www.agilent.com/find/eesof-docs/

Advanced Design System 2011.01 - Cadence Library Integration

35

In order to simulate this model in ADS, the expression test needs to be defined and a
value must be given to the variable AAA .
Assuming that:
test(x)=x*1.2
AAA=1

Do one of the following:

Append the definition of test and AAA to the model file:1.

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \

...

Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test\(AAA\) Itf=0.32 Ptf=32 \

Tr=1E-09 Fc=0.6

test\(x\)=x*1.2

AAA=1

Create a separate ASCII file (for example, function.inc) containing the definition of2.
test and AAA .
If you are using RFIC Dynamic Link, place a Netlist Include Component on the top
level ADS schematic by selecting DynamicLink > Add Netlist File Include .

The IncludePath parameter should contain the path of the ASCII file and the
IncludeFiles parameter should contain the file name. When this component is
netlisted by ADS, it generates a #include statement that is later replaced by the
contents of the ASCII file. For more information on file inclusion, refer to File
Inclusion (cktsim).
The Netlist Include component can thus be used to append a file containing multiple
models or even the entire set of models. It can also be used to select among various
files containing different sets of process parameters corresponding to different corner
cases. For more information, see NetlistInclude (Netlist File Include Component)
(ccsim).
In a practical example, typical.inc could contain the process parameter values (sheet
resistance, area capacitance, etc.) for the typical case, while maximum.inc would
have definitions corresponding to the maximum case. The Netlist Include component
can then be used to select which corner case to simulate by pointing to either
typical.inc or maximum.inc .
If you are using RF Design Environment, you can include files into the netlist by
selecting Setup > Model Libraries in the Affirma Analog Circuit Design Environment
window to access the Model Library Setup form. For more information on Model
Library Setup, refer to your Cadence documentation.
Include the ASCII file with the expression definitions directly in the model file.3.

Advanced Design System 2011.01 - Cadence Library Integration

36

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \

...

Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test\(AAA\) Itf=0.32 Ptf=32 \

Tr=1E-09 Fc=0.6

#include "/users/home/functions.inc"

Note
If an expression is used to define a model parameter, the argument cannot be another model
parameter or an instance parameter. If the model needs to use the value of an instance parameter
in the calculation of a model parameter, this requires creating a subcircuit that incorporates the
model, as in the following example:

define npn1 \(c b e \)

parameters AAA=1 area=1 region=1 noise=1

model NPN BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \

Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \

Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \

Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \

Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \

Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test\(AAA\) Itf=0.32 Ptf=32 \

Tr=1E-09 Fc=0.6

NPN:qin c b e 0 Area=area Region=region Noise=noise

end npn1

Advanced Design System 2011.01 - Cadence Library Integration

37

 Migrating simInfo Definitions
The ADS simInfo definition for RF Design Environment (RFDE) has been changed slightly
from RFIC Dynamic Link to more closely approximate the Spectre simInfo definition. The
change has the benefit of enabling some functionality in OASIS direct which would
otherwise remain broken, due to sub-classing of OASIS direct netlisting methods.

Important
It is recommended that you update your simInfo by following the steps below if backward compatibility is
not required. Performing these changes will prevent your library from being used in ADS 2002A or
previous versions of ADS.

In order to migrate from an old RFIC Dynamic Link definition to the new RFDE definition,
the following steps should be performed:

Update componentName so it no longer uses expr(iPar('model)) . The model1.
parameter will be accessed through nlGetComponentName. If a parameter other than
model was specified in iPar, it is necessary to create a propMapping that will map the
name of the parameter used to model.
Change the netlist procedure IdfDevPrim or IdfCompPrim to ADSsimCompPrim. Both2.
IdfDevPrim and IdfCompPrim call ADSsimCompPrim so netlisting can speed up by
calling ADSsimCompPrim directly.
If you are migrating from a Cadence 4.4.3 library, macroArguments must be added3.
to the instParameters field.
The namePrefix field is no longer used, and can be eliminated.4.
The trise parameter has been added to all ADS simulator primitives so that you can5.
now use trise/dtemp instead of Temp.

 Using the Migration Tool
In order to facilitate the process of migrating an existing Cadence library that contains
Dynamic Link simulator definitions, a migration tool has been developed. This migration
tool enables the specification of a library, and it will update any ads simInfo definitions it
finds within that library. The tool will report an error message in only one case, which is if
expr(iPar('<param>)) notation has been used for a componentName, and the parameter
name specified was not model. In this case, it will still clear the componentName so it will
operate off of model.

If simInfo fields were added to the default list of ads simInfo parameters, the migration
tool will clear them. No warning or error is generated to indicate that a field is being
deleted.

In order to enable the ADS simInfo migration tool so it appears as a menu option, it is
necessary to set the environment variable RFDE_MIGRATE to yes . When this environment
variable is set, the Migrate simInfo menu item appears under the Tools > ADS
Dynamic Link menu item on the CIW.

Advanced Design System 2011.01 - Cadence Library Integration

38

 Migrating an Existing ads simInfo Definition

To perform the migration:

Choose Tools > ADS Dynamic Link > Migrate simInfo on the CIW. The Migrate1.
ADS simInfo form appears.

Optionally, you can call the function rfde_MigrateSimInfoDialog() from the CIW.
Enable the Migrate existing ads simInfo definitions to RFDE/Dynamic Link simInfo2.
definitions , and select the appropriate library. Note that analogLib and basic do not
appear in the library list since these libraries are delivered with the product, and have
already been updated.

 Restoring an ads simInfo Definition

After simInfo definitions are migrated, the old definition is stored in a supplemental
simInfo section called oldads . This enables you to restore a definition if it is decided that
the new definition was not what you were really looking for.
To restore a definition:

Enable the Restore back-up ads simInfo definitions saved from prior ads simInfo1.
migration on the migration form.
Click OK in the Migrate ADS simInfo form.2.

Advanced Design System 2011.01 - Cadence Library Integration

39

 Migrating a Spectre Definition to an ADS Definition

Improvements to the ads simInfo definition provide a much closer match to the existing
spectre simInfo. While the migration tool is not a complete translator, it does enable you
to more reliably automate the process of translating a spectre simInfo definition into an
equivalent ads simInfo definition.

Migration is performed on all components in the library that have a spectre stop view. The
spectre view is first copied to an ads view in the migration. Afterwards, the simInfo
section of the CDF will be set up based on the spectre simInfo section of the CDF.

There are a few things that will be changed in the simInfo of a spectre view to get an
equivalent ads view. Note that this is not always possible, and that the spectre to ads
migration tool is provided as an ease of use tool that will get things started, not as a
100% guaranteed translator. The migration tool is primarily provided for translating
process design kits (PDKs), and expects that the majority of the components encountered
will have an ads simulator primitive that is identical to the spectre primitive, because a
subcircuit definition has been created for the component.

To convert a Spectre simInfo into an ADS simInfo:

Copy the spectre view to an ads view if a spectre view exists.1.
Set up the netlist procedure. For compatibility with ADS Dynamic Link 2002, set the2.
netlist procedure to:

IdfCompPrim if component name is set to a value other than subcircuit.
IdfCompPrim if model has a default value, and component name is left blank.
IdfCompPrim if there are no hierarchical views (i.e. extracted or schematic type
views).
IdfSubcktCall if none of the other cases are true.
This assumes that a special spectre function was not used. Generally speaking,
it is safe to use IdfCompPrim for any component.
If ADS Dynamic Link 2002 compatibility is not an issue, set the netlist procedure
to ADSsimCompPrim or ADSsimSubcktCall.

Set up the componentName field. If a hierarchical subcircuit, netlist included3.
subcircuit, or model parameter is used to determine the component name, use the
spectre value directly. Simulator primitives that use models will still use the value of
the parameter model, so the spectre value can still be used. If the component name
specifies a primitive that does not use a model, the appropriate ADS primitive must
be substituted for the spectre primitive name.
Spectre & ADS Equivalent Primitives shows the ADS primitive equivalent for spectre
primitives that do not use models.

Advanced Design System 2011.01 - Cadence Library Integration

40

Spectre Primitive ADS Primitive

capacitor C

delay VCVS

inductor L

iprobe Short

mutual_inductor Mutual

relay SwitchV

resistor R

transformer tf

vccs VCCS

vcvs VCVS

The primitives in Primitives Mapped to Agilent analogLib have been mapped in the
Agilent Technologies version of analogLib. These components are extremely difficult
to map because they require special processing in the form of custom netlisting
functions. If you have used any of these primitives, it is recommended that you
determine an appropriate mapping based on what is provided in analogLib, or simply
use the analogLib definition.

Spectre Component analogLib component to refer to

Cccs cccs

Ccvs ccvs

Isource isource

Port port

Vsource vource

Spectre Primitives with no Direct ADS Equivalent shows Spectre primitives that have
no direct ADS equivalent (i.e. you must construct an equivalent circuit to represent
the component, either because the ADS equivalent primitive has dissimilar
parameters, or because an SDD must be created to represent the primitive).

Advanced Design System 2011.01 - Cadence Library Integration

41

Spectre
Component

Can not be used because...

a2d No equivalent

cktrom No equivalent

d2a No equivalent

fourier No equivalent

intcap C Model in ADS does not have equivalent parameters

msline ADS mlin requires msub, too disimilar to use

node No equivalent

nport No equivalent, custom S-parameter circuit must be written

paramtest Equivalent functionality can be achieved using if statements, but cannot be done
as a primitive

pcccs Requires mapping to an SDD

pccvs Requires mapping to an SDD

phy_res No equivalent

pvccs Requires mapping to an SDD

pvcvs Requires mapping to an SDD

quantity Option statements could be used, but the options are not equivalent

rdiff R Model in ADS does not have equivalent parameters

scccs No equivalent

sccvs No equivalent

svccs No equivalent

svcvs No equivalent

switch SwitchV only allows 2 settings, is not quite equivalent

tline ADS tlin4 requires different parameters

winding No equivalent

zcccs No equivalent

zccvs No equivalent

zvccs No equivalent

zvcvs No equivalent

Set up the terminal order. If a subcircuit is being used, use the spectre terminal4.
order. Generally speaking, the ADS terminal order is identical to the spectre terminal
for primitives. Consult Terminal Order to see what the equivalent terminal order for
an ADS component is versus a supported spectre primitive.

Advanced Design System 2011.01 - Cadence Library Integration

42

Spectre Component Spectre Term Order ADS Term Order

b3soipd d g s b d g s b

bjt c b e [s] c b e [s]

bsim1 d g s b d g s b

bsim2 d g s b d g s b

bsim3 d g s b d g s b

bsim3v3 d g s b d g s b

bsim4 d g s b d g s b

btasoi d g s b d g s b

capacitor pos neg pos neg

delay p n ps ns p n ps ns

diode pos neg pos neg

gaas d g s d g s

hvmos d g s b d g s b

inductor pos neg pos neg

iprobe pos neg pos neg

jfet d g s [b] d g s

mos0 d g s b d g s b

mos1 d g s b d g s b

mos2 d g s b d g s b

mos3 d g s b d g s b

mos15 d g s b d g s b

mutual_inductor <no terminals> <no terminals>

relay p n ps ns p n ps ns

resistor pos neg pos neg

tom2 d g s d g s

transformer t1 b1 t2 b2 t1 b1 t2 b2

vbic c b e [s] [dt] [tl] c b e [s] [dt]

vccs p n ps ns p n ps ns

vcvs p n ps ns p n ps ns

Set up the terminal mapping. The terminal mapping for ADS is constructed in a5.
similar manner to the spectre terminal mapping. However, in ADS, pin annotations
are always output using a numeric name (spectre does custom name some pin
outputs, like on the BSIM where the spectre names are d g s b). ADS pin numbers
always start with 1, and increment from there. To make the ADS mapping, take the
number of the terminal name in the list, then add ": P" to that number.
Example: termOrder='(D G S B)
termMapping='(nil D ": P1" G ": P2" S ": P3" B ": P4")
All two terminal primitives in ADS will only output a positive direction current. For
these components, it is necessary to apply the minus operator to the negative
terminal. In Spectre, these are formatted as (FUNCTION minus(ROOT "PLUS")). ADS
uses a slightly different syntax. To map a terminal to be the negative of a positive
terminal, place the keyword "minus." between the colon and the positive terminal
name.
Example: termMapping='(nil PLUS ": P1" MINUS ":minus.P1")
Set up the instance parameters. The instParameters field for subcircuits will match6.

Advanced Design System 2011.01 - Cadence Library Integration

43

the spectre instParameters field, with one exception. It is necessary to map the
multiplicity parameter m to _M . If a simulator primitive is used directly, it is
necessary to set up the instParameters field with the proper parameter names for
ADS. Unlike spectre, ADS uses mixed case names or upper case names. This means
that the spectre primitive parameter names will never match the spectre primitive
names, which are always lower case. The parameter names are also not always
identical.
Consult Instance Parameter Mapping to see what the equivalent parameter names
are for instance primitives. Note that parameters that have no applicable mapping to
ADS are not listed.
Spectre Component Spectre Instance parameters ADS Instance Parameters

b3soipd w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

bjt area region trise m Area Region Trise _M

bsim1 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

bsim2 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

bsim3 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

bsim3v3 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

bsim4 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

btasoi w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

capacitor c tc1 tc2 trise tnom w l m C TC1 TC2 Trise Tnom Width Length _M

delay td gain m T G _M

diode area perim region trise m Area Periph Region Trise _M

gaas area region m Area Region _M

hvmos w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs _M

inductor l r tc1 tc2 trise tnom m L R TC1 TC2 Trise Tnom _M

iprobe No Parameters

jfet area region m Area Region _M

mos0 w l m W L _M

mos1 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

mos2 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

mos3 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

mos15 w l as ad ps pd nrd nrs region m W L As Ad Ps Pd Nrd Nrs Region _M

mutual_inductor coupling ind1 ind2 K Inductor1 Inductor2

relay vt1 vt2 ropen rclosed m V1 V2 R1 R2 V2_M

resistor r l w tc1 tc2 trise isnoisy m R Length Width TC1 TC2 Trise Noise _M

tom2 area region m Area Region _M

transformer n1 n2 m

vbic area region trise m Area Region Trise _M

vccs gm m G _M

vcvs gain m G _M

Set up property mapping. Consult the table provided in section (6). The property7.
mapping is a disembodied list, with the output instance name first, followed by the
parameter name that is mapped to that instance parameter. If spectre uses a
property mapping, make sure to use that value, not the spectre instance parameter
name.
Example: propMapping='(nil W w L l as As ad Ad Ps ps Pd pd Nrd nrd Nrs nrs Region

Advanced Design System 2011.01 - Cadence Library Integration

44

region _M m)
Set up type mapping. The type mapping enables you to specify a function that will be8.
called to process the value of a parameter prior to netlisting. This may be necessary
for some parameters that netlist differently for spectre versus ADS (e.g. Region in
ADS is an integer, but is a string literal in spectre). Additionally, in Cadence 4.4.6,
there is a simInfo property, stringParameters . All of the parameters specified in
stringParameters should be set up to output as type "string".
In ADS, a type mapping function is created by prefixing rfdeNetlistTypemap_ to the
name of the mapping you wish to use. Thus, a function rfdeNetlistTypemap_string
would be referred to as "string" in the type mapping field.
ADS provides three relevant type mappings:

string - The string type mapping should be used if a parameter value needs to
be output with double quotes.
region - The region type mapping takes the typical cyclic field strings used on
the region parameters in analogLib, and maps them to an appropriate integer
value.
boolean - The boolean type mapping will take a values of "t" and output it as
"yes", and will otherwise output "no". In ADSsim, "yes" corresponds to integer 1
and "no" corresponds to integer 0.
Example: typeMapping='(nil Region region)

Set up uselib. The uselib field specifies that a subcircuit from an ADSsim library9.
needs to be included in the final netlist. The ADSsim libraries are special libraries that
are provided in $HPEESOF_DIR/circuit/components. Use Components Requiring a
uselib Statement to see the components that require a uselib statement.
ADS Component uselib value

tf ckt

VCCS ckt

VCVS ckt

To perform the migration:

Choose Tools > ADS Dynamic Link > Migrate simInfo on the CIW. The Migrate1.
ADS simInfo form appears.
Select the Create ADS simInfo definitions from spectre simInfo definitions option in2.
the Migrate ADS simInfo form.
Select the library to migrate. At present, the migration tool does not support3.
mapping of all spectre primitives. Additionally, certain primitives that use models
may be misidentified, resulting in inappropriate parameter mappings. As with the old
ads to new ads migration, analogLib and basic are not shown in the library list,
because those libraries have been set up and delivered with the product.

Advanced Design System 2011.01 - Cadence Library Integration

45

 Adding CDF/SimInfo to a Component
Library
The section provides information on modifying the Cadence simInfo (Simulation
Information) section in a CDF (Component Description Format) file.

 Using cdfDumpAll
The benefit of adding simulator information via cdfDumpAll is that you need not have
numerous files containing specific simulation parameters and simInfo. Instead, all of the
CDF information is compiled for you in a single ASCII file. This method is probably your
best choice if you do not have source files for parameter and simInfo data for each and
every simulator that a library currently supports.

 Dumping the CDF for an Entire Component Library

To create and modify an ASCII file containing the entire CDF for an existing component
library:

Enter the following Skill command in the Cadence CIW:1.

cdfDumpAll("libName" "fileName" ?edit t)
In the text editor of your choice (vi, emacs, etc.), for each library cell add the simInfo2.
for the new simulator ads to the CDF file. In some cases, you may also need to add
new CDF parameters.
Load this file in the CIW using the command:3.

load "fileName"

This modifies the library database accordingly, assuming you have write permission to the
library.

 Dumping the CDF for Individual Components

To create and modify an ASCII file containing the CDF for an individual component:

Enter the following Skill command in the Cadence CIW:1.

cdfDump("libName" "fileName" ?cellName "cellName" ?edit t)
In the text editor of your choice (vi, emacs, etc.), for each library cell add the simInfo2.
for the new simulator ads to the CDF file. In some cases, you may also need to add
new CDF parameters.
Load this file in the CIW using the command:3.

load "fileName"

This modifies the library database accordingly, assuming you have write permission to the
library.

Advanced Design System 2011.01 - Cadence Library Integration

46

 Cadence Documentation References
The following references supplement the information in this section. All Cadence
documentation is available from the Cadence Documentation Browser (cdsdoc) and/or
Openbook.

Cadence Component Description Format User Guide1.
Cadence Library Manager User Guide2.
Cadence Analog Design Environment SKILL Language Reference3.
Cadence SKILL Language Reference4.
Cadence SKILL language User Guide5.

Advanced Design System 2011.01 - Cadence Library Integration

47

 The basic Library
In prior releases, RFIC Dynamic Link required that the basic library nlpglobals cell
contained the ads view. In the past, the software was distributed with a modified version
of the basic library with a special nlpglobals view that included an ADS stop view. This is
no longer required in the current release or future releases of RFIC Dynamic Link.

Advanced Design System 2011.01 - Cadence Library Integration

48

 Modifying the analogLib Library
RFIC Dynamic Link includes a version of the Cadence analogLib that has been extended to
work with the ADS Analog/RF Simulator (ADSsim). This library is located in:

$HPEESOF_DIR/cdslibs/5.1.0/analogLib

which only works with Cadence IC 5.1.41 (CDBA version). For more information on the
Agilent Technologies analogLib components, refer to the analogLib Components
documentation.

Note
It is strongly recommended that you use the Cadence analogLib library in place of the Agilent analogLib
components.

If you need to extend your own version of analogLib to work with the ADSsim, this section
may be useful.

Note
Agilent Technologies has performed extensive updates to the modified version of analogLib. If you create
your own version of analogLib, Agilent Technologies cannot be responsible for problems that may occur as
a result of the modified library.

To modify your version of analogLib:

Copy your current version of analogLib to a new working version of analogLib.1.
Start Cadence while pointing to your new working version of analogLib.2.
Load the skill file.3.

$HPEESOF_DIR/cdslibs/skill/analogLib_siminfo.il

This will automatically add the necessary simInfo definitions and create the
appropriate stop view for your new working version of analogLib.

Using the procedure above will help to ensure that you do not loose any modifications you
have made to your existing analogLib.

	 About Cadence Library Integration
	 RFIC Dynamic Link
	 RF Design Environment
	 Library Integration
	 Using Examples
	 Intended Audience

	 Getting ADS Device Parameter Information
	 Listing Available Devices
	 Getting Device Parameters

	 Creating the Netlist Interface
	 Creating the ads Symbol View for a Component
	 Modifying the Component Description Format
	 Modifying the Component Netlisting Function(s)
	 Setting up a Component Stop View
	 Setting up a Special simInfo for a Stop View (viewInfo)
	 Special Functions and Properties

	 Creating Model Files
	 Creating a Simple ADS Model File
	 Creating a Parametric Subnetwork Model File
	 Defining Instance Parameters using Expressions
	 Defining Model Parameters using Expressions

	 Migrating simInfo Definitions
	 Using the Migration Tool

	 Adding CDF/SimInfo to a Component Library
	 Using cdfDumpAll
	 Cadence Documentation References

	 The basic Library
	 Modifying the analogLib Library

